ObjectivesAdenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) are assumed to be indolent lung adenocarcinoma with excellent prognosis. We aim to identify these lesions from invasive adenocarcinoma (IA) by… Click to show full abstract
ObjectivesAdenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) are assumed to be indolent lung adenocarcinoma with excellent prognosis. We aim to identify these lesions from invasive adenocarcinoma (IA) by a radiomics approach.MethodsThis retrospective study was approved by institutional review board with a waiver of informed consent. Pathologically confirmed lung adenocarcinomas manifested as lung nodules less than 3 cm were retrospectively identified. In-house software was used to quantitatively extract 60 CT-based radiomics features quantifying nodule’s volume, intensity and texture property through manual segmentation. In order to differentiate AIS/MIA from IA, least absolute shrinkage and selection operator (LASSO) logistic regression was used for feature selection and developing radiomics signatures. The predictive performance of the signature was evaluated via receiver operating curve (ROC) and calibration curve, and validated using an independent cohort.Results402 eligible patients were included and divided into the primary cohort (n = 207) and the validation cohort (n = 195). Using the primary cohort, we developed a radiomics signature based on five radiomics features. The signature showed good discrimination between MIA/AIS and IA in both the primary and validation cohort, with AUCs of 0.95 (95% CI, 0.91–0.98) and 0.89 (95% CI, 0.84–0.93), respectively. Multivariate logistic analysis revealed that the signature (OR, 13.3; 95% CI, 6.2–28.5; p < 0.001) and gender (OR, 3.5; 95% CI, 1.2–10.9; p = 0.03) were independent predictors of indolent lung adenocarcinoma.ConclusionThe signature based on radiomics features helps to differentiate indolent from invasive lung adenocarcinoma, which might be useful in guiding the intervention choice for patients with pulmonary nodules.Key points• Based on radiomics features, a signature is established to differentiate adenocarcinoma in situ and minimally invasive adenocarcinoma from invasive lung adenocarcinoma.
               
Click one of the above tabs to view related content.