LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sinogram-based deep learning image reconstruction technique in abdominal CT: image quality considerations

Photo from wikipedia

To investigate the image quality and perception of a sinogram-based deep learning image reconstruction (DLIR) algorithm for single-energy abdominal CT compared to standard-of-care strength of ASIR-V. In this retrospective study,… Click to show full abstract

To investigate the image quality and perception of a sinogram-based deep learning image reconstruction (DLIR) algorithm for single-energy abdominal CT compared to standard-of-care strength of ASIR-V. In this retrospective study, 50 patients (62% F; 56.74 ± 17.05 years) underwent portal venous phase. Four reconstructions (ASIR-V at 40%, and DLIR at three strengths: low (DLIR-L), medium (DLIR-M), and high (DLIR-H)) were generated. Qualitative and quantitative image quality analysis was performed on the 200 image datasets. Qualitative scores were obtained for image noise, contrast, small structure visibility, sharpness, and artifact by three blinded radiologists on a 5-point scale (1, excellent; 5, very poor). Radiologists also indicated image preference on a 3-point scale (1, most preferred; 3, least preferred). Quantitative assessment was performed by measuring image noise and contrast-to-noise ratio (CNR). DLIR had better image quality scores compared to ASIR-V. Scores on DLIR-H for noise (1.40 ± 0.53), contrast (1.41 ± 0.55), small structure visibility (1.51 ± 0.61), and sharpness (1.60 ± 0.54) were the best (p < 0.05) followed by DLIR-M (1.85 ± 0.52, 1.66 ± 0.57, 1.69 ± 0.59, 1.68 ± 0.46), DLIR-L (2.29 ± 0.58, 1.96 ± 0.61, 1.90 ± 0.65, 1.86 ± 0.46), and ASIR-V (2.86 ± 0.67, 2.55 ± 0.58, 2.34 ± 0.66, 2.01 ± 0.36). Ratings for artifacts were similar for all reconstructions (p > 0.05). DLIRs did not influence subjective textural perceptions and were preferred over ASIR-V from the beginning. All DLIRs had a higher CNR (26.38–102.30%) and lower noise (20.64–48.77%) than ASIR-V. DLIR-H had the best objective scores. Sinogram-based deep learning image reconstructions were preferred over iterative reconstruction subjectively and objectively due to improved image quality and lower noise, even in large patients. Use in clinical routine may allow for radiation dose reduction. • Deep learning image reconstructions (DLIRs) have a higher contrast-to-noise ratio compared to medium-strength hybrid iterative reconstruction techniques. • DLIR may be advantageous in patients with large body habitus due to a lower image noise. • DLIR can enable further optimization of radiation doses used in abdominal CT.

Keywords: image; image quality; learning image; deep learning; dlir

Journal Title: European Radiology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.