Invasive lobular breast carcinomas (ILC) account for approximately 15% of breast cancer diagnoses. They can be difficult to diagnose both clinically and radiologically, due to their infiltrative growth pattern. The… Click to show full abstract
Invasive lobular breast carcinomas (ILC) account for approximately 15% of breast cancer diagnoses. They can be difficult to diagnose both clinically and radiologically, due to their infiltrative growth pattern. The pattern of metastasis of ILC is unusual, with spread to the serosal surfaces (pleura and peritoneum), retroperitoneum and gastrointestinal (GI)/genitourinary (GU) tracts and a higher rate of leptomeningeal spread than IDC. Routine staging and response assessment with computed tomography (CT) can be undertaken quickly and measurements can be reproduced easily, but this is challenging with metastatic ILC as bone-only/bone-predominant patterns are frequently seen and assessment of the disease status is limited in these scenarios. Functional imaging such as whole-body MRI (WBMRI) allows the assessment of bone and soft tissue disease by providing functional information related to differences in cellular density between malignant and benign tissues. A number of recent studies have shown that WBMRI can detect additional sites of disease in metastatic breast cancer (MBC), resulting in a change in systemic anti-cancer therapy. Although WBMRI and fluorodeoxyglucose-positron-emission tomography-computed tomography (FDG-PET/CT) have a comparable performance in the assessment of MBC, WBMRI can be particularly valuable as a proportion of ILC are non-FDG-avid, resulting in the underestimation of the disease extent. In this review, we explore the added value of WBMRI in the evaluation of metastatic ILC and compare it with other imaging modalities such as CT and FDG-PET/CT. We also discuss the spectrum of WBMRI findings of the different metastatic sites of ILC with CT and FDG-PET/CT correlation. • ILC has an unusual pattern of spread compared to IDC, with metastases to the peritoneum, retroperitoneum and GI and GU tracts, but the bones and liver are the commonest sites. • WBMRI allows functional assessment of metastatic disease, particularly in bone-only and bone-predominant metastatic cancers such as ILC where evaluation with CT can be challenging and limited. • WBMRI can detect more sites of disease compared with CT, can reveal disease progression earlier and provides the opportunity to change ineffective systemic treatment sooner.
               
Click one of the above tabs to view related content.