LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On Liouville Type Theorem for Stationary Non-Newtonian Fluid Equations

Photo by sharonmccutcheon from unsplash

In this paper, we prove a Liouville type theorem for non-Newtonian fluid equations in $$\mathbb R^3$$ R 3 , having the diffusion term $${\varvec{A}}_p( u)=\nabla \cdot ( |{\varvec{D}}(u)|^{p-2} {\varvec{D}}(u))$$ A… Click to show full abstract

In this paper, we prove a Liouville type theorem for non-Newtonian fluid equations in $$\mathbb R^3$$ R 3 , having the diffusion term $${\varvec{A}}_p( u)=\nabla \cdot ( |{\varvec{D}}(u)|^{p-2} {\varvec{D}}(u))$$ A p ( u ) = ∇ · ( | D ( u ) | p - 2 D ( u ) ) with $$ {\varvec{D}}(u) = \frac{1}{2} (\nabla u + (\nabla u)^{ \top })$$ D ( u ) = 1 2 ( ∇ u + ( ∇ u ) ⊤ ) , $$3/2

Keywords: varvec; newtonian fluid; type theorem; liouville type; non newtonian

Journal Title: Journal of Nonlinear Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.