First-order hyperbolic partial differential equations with two internal variables have been used to model biological and epidemiological problems with two physiological structures, such as chronological age and infection age in… Click to show full abstract
First-order hyperbolic partial differential equations with two internal variables have been used to model biological and epidemiological problems with two physiological structures, such as chronological age and infection age in epidemic models, age and another physiological character (maturation, size, stage) in population models, and cell-age and molecular content (cyclin content, maturity level, plasmid copies, telomere length) in cell population models. In this paper, we study nonlinear double physiologically structured population models with two internal variables by applying integrated semigroup theory and non-densely defined operators. We consider first a semilinear model and then a nonlinear model, use the method of characteristic lines to find the resolvent of the infinitesimal generator and the variation of constant formula, apply Krasnoselskii’s fixed point theorem to obtain the existence of a steady state, and study the stability of the steady state by estimating the essential growth bound of the semigroup. Finally, we generalize the techniques to investigate a nonlinear age-size structured model with size-dependent growth rate.
               
Click one of the above tabs to view related content.