LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Convex Computation of Extremal Invariant Measures of Nonlinear Dynamical Systems and Markov Processes

Photo by kajtek from unsplash

We propose a convex-optimization-based framework for computation of invariant measures of polynomial dynamical systems and Markov processes, in discrete and continuous time. The set of all invariant measures is characterized… Click to show full abstract

We propose a convex-optimization-based framework for computation of invariant measures of polynomial dynamical systems and Markov processes, in discrete and continuous time. The set of all invariant measures is characterized as the feasible set of an infinite-dimensional linear program (LP). The objective functional of this LP is then used to single out a specific measure (or a class of measures) extremal with respect to the selected functional such as physical measures, ergodic measures, atomic measures (corresponding to, e.g., periodic orbits) or measures absolutely continuous w.r.t. to a given measure. The infinite-dimensional LP is then approximated using a standard hierarchy of finite-dimensional semidefinite programming problems, the solutions of which are truncated moment sequences, which are then used to reconstruct the measure. In particular, we show how to approximate the support of the measure as well as how to construct a sequence of weakly converging absolutely continuous approximations. As a by-product, we present a simple method to certify the nonexistence of an invariant measure, which is an important question in the theory of Markov processes. The presented framework, where a convex functional is minimized or maximized among all invariant measures, can be seen as a generalization of and a computational method to carry out the so-called ergodic optimization, where linear functionals are optimized over the set of invariant measures. Finally, we also describe how the presented framework can be adapted to compute eigenmeasures of the Perron–Frobenius operator.

Keywords: computation; systems markov; measure; dynamical systems; markov processes; invariant measures

Journal Title: Journal of Nonlinear Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.