LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dinoflagellate-targeted PCR reveals highly abundant and diverse communities of parasitic dinoflagellates in and near Zhubi Reef, South China Sea

Photo from wikipedia

While diversity of symbiodiniacean dinoflagellates has been a focus of coral reef ecological research, information on the diversity of planktonic dinoflagellates in reef ecosystems remains limited. We used dinoflagellate-targeted PCR… Click to show full abstract

While diversity of symbiodiniacean dinoflagellates has been a focus of coral reef ecological research, information on the diversity of planktonic dinoflagellates in reef ecosystems remains limited. We used dinoflagellate-targeted PCR to investigate dinoflagellate diversity for a coral reef ecosystem. In the summer of 2007, plankton samples were collected from a lagoon, atoll, and open sea area of Zhubi Reef in the Nansha Islands, South China Sea. Sequencing of dinoflagellate-specific SSU rDNA clone libraries from samples in each of these habitats revealed high diversity and numerous novel dinoflagellate lineages. Gymnodiniales were most abundantly represented in all three water areas. Lagoon assemblages were co-dominated by Syndiniales and Gonyaulacales, the atoll by Gonyaulacales and Peridiniales, and the open sea by Syndiniales and Prorocentrales taxa. Species in the Syndiniales (group II) genus Amoebophrya were represented by eight new sequences and 13 previously described clades and were dominated by species reported to infect Gymnodiniales, Gonyaulacales, Peridiniales, and Prorocentrales taxa. And Amoebophrya were particularly abundant and diverse in the lagoon. Our results suggest that Amoebophrya probably play an important role in regulating dynamics of dinoflagellate assemblages in the Zhubi Reef coral ecosystem. In contrast, the few symbiodiniacean taxa detected occurred only in the open sea, suggesting planktonic aposymbiotic Symbiodiniaceae rarely occur in the reef ecosystem. We demonstrate the usefulness of a dinoflagellate-specific molecular technique for profiling dinoflagellate communities, and uncover diversity and the potential importance of parasitic lineages in a coral reef ecosystem.

Keywords: diversity; dinoflagellate targeted; sea; dinoflagellate; zhubi reef; reef

Journal Title: Coral Reefs
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.