LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Occurrence of Peroxiredoxins and Changes in Redox State in Acer platanoides and Acer pseudoplatanus During Seed Development

Photo from wikipedia

Norway maple (Acer platanoides L.) and sycamore (A. pseudoplatanus L.) are genetically closely related species that produce desiccation-tolerant (orthodox) and desiccation-sensitive (recalcitrant) seeds, respectively. Norway maple and sycamore seeds were… Click to show full abstract

Norway maple (Acer platanoides L.) and sycamore (A. pseudoplatanus L.) are genetically closely related species that produce desiccation-tolerant (orthodox) and desiccation-sensitive (recalcitrant) seeds, respectively. Norway maple and sycamore seeds were analyzed during their development from the 14th to 24th weeks after flowering (WAF) and 11th to 21st WAF, respectively, to explore redox-related biochemical properties related to their contrasting physiology. Selected similar stages of seed development were characterized during the course of gradual decreasing water content in both seed types. The levels of protein and non-protein thiols peaked at the 18th WAF in Norway maple embryonic axes, whereas these levels constantly increased in maturing sycamore seeds. The glutathione half-cell reduction potential revealed that the cell environment adopted a more oxidized state in sycamore seeds. Peroxiredoxins (Prxs), including cytosolic/nuclear 1-Cys-Prx, cytosolic PrxIIC, mitochondrial PrxIIE, and plastidic PrxIIF, 2-Cys-Prx, and PrxQ, were detected in both species, but Norway maple embryonic axes contained higher levels of PrxIIC and PrxIIE, two Prxs with the highest peroxide detoxification potential in Arabidopsis. Redox proteomics revealed that 2-Cys-Prx was present in reduced form in both species, whereas 1-Cys-Prx was reduced uniquely in Norway maple seeds. Several enzymes, including glucose and ribitol dehydrogenase as well as fructose-bisphosphate aldolase, were oxidation-sensitive at all developmental stages in sycamore embryonic axes. Redox signaling as manifested by reactive oxygen species signals, and the oxidation of protein thiols to disulfides are discussed with respect to their significance in determining orthodox or recalcitrant seed characteristics.

Keywords: seed; seed development; acer platanoides; cys prx; norway maple

Journal Title: Journal of Plant Growth Regulation
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.