LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Promotion of the Rapid Growth in Haematococcus pluvialis Under 0.16% CO2 Condition Revealed by Transcriptome and Metabolomic Analysis

Photo by jeremybishop from unsplash

The unicellular green alga Haematococcus pluvialis is considered the optimal natural source of astaxanthin, a strong antioxidant in nature. In the present study, transcriptome and metabolic profiling of H. pluvialis… Click to show full abstract

The unicellular green alga Haematococcus pluvialis is considered the optimal natural source of astaxanthin, a strong antioxidant in nature. In the present study, transcriptome and metabolic profiling of H. pluvialis under 0.16% and 0.04% CO2 levels were performed to explore the underlying mechanism by which CO2 affects growth at the vegetative stage of this alga. Approximately 1665 differentially expressed unigenes were screened in response to different CO2 conditions by transcriptome analysis. The genes related to photosynthesis, the tricarboxylic acid (TCA) cycle, glycolysis, pentose phosphate pathway, and nitrogen metabolism, were mostly up-regulated by 0.16% CO2. A total of 36 differential metabolites were identified in metabolic profiling, of them, citric acid and ribose were accumulated; however, 12 common amino acids and stress-resistant related substrates such as ornithine and putrescine were decreased at 0.16% CO2 level. Combing the results of the algal growth, the elevated CO2 promoted photosynthesis, and carbon utilization including TCA cycle and glycolysis, together with the stimulated nitrogen metabolism, protein synthesis, and energy metabolism, which resulted in rapid growth of H. pluvialis.

Keywords: rapid growth; co2; pluvialis co2; haematococcus pluvialis; growth

Journal Title: Journal of Plant Growth Regulation
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.