LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Volumetric measurements of a self-similar adverse pressure gradient turbulent boundary layer using single-camera light-field particle image velocimetry

Photo by ale_s_bianchi from unsplash

As a novel volumetric particle image velocimetry technique, single-camera light-field PIV (LF-PIV) is able to acquire three-dimensional flow fields through a single camera. Compared with other multi-camera 3D PIV techniques,… Click to show full abstract

As a novel volumetric particle image velocimetry technique, single-camera light-field PIV (LF-PIV) is able to acquire three-dimensional flow fields through a single camera. Compared with other multi-camera 3D PIV techniques, LF-PIV has distinct advantages, including concise hardware setup and low optical access requirements. Its capability has proven effective in many experimental investigations. In this study, the use of LF-PIV in measuring a self-similar adverse pressure-gradient turbulent boundary layer (APG-TBL) is demonstrated. Experiments are performed in a large water tunnel at the Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC), Monash University. Sets of 250 light-field PIV image pairs are captured covering both the inner and outer regions of the boundary layer. Instantaneous 3D velocity fields are reconstructed using a GPU accelerated density ray tracing multiplicative reconstruction technique (DRT-MART) and three-dimensional cross-correlation methods. The LF-PIV results are compared with two-dimensional PIV (2D-PIV) measurements of the same flow. Comparable accuracy to 2D-PIV is achieved for first- and second-order velocity statistics above approximately $$ y/\delta_{1} = 1 $$ .

Keywords: boundary layer; light field; piv; image; single camera; camera

Journal Title: Experiments in Fluids
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.