LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Monte Carlo simulation of the joint non-Gaussian periodically correlated time-series of air temperature and relative humidity

Photo by jontyson from unsplash

In this paper a numerical stochastic model of the joint non-Gaussian periodically correlated time-series of air temperature and relative humidity is proposed. The model is based on the assumption that… Click to show full abstract

In this paper a numerical stochastic model of the joint non-Gaussian periodically correlated time-series of air temperature and relative humidity is proposed. The model is based on the assumption that real weather processes are periodically correlated random processes with a period equal to 1 day. This assumption takes into account the diurnal variation of real meteorological processes, defined by the day/night alternation. The input parameters of the model (one-dimensional distributions of air temperature and relative humidity and the correlation structure of the joint time-series) are determined from long-term real observations at weather stations. On the basis of simulated trajectories, some statistical properties of rare combinations of air temperature and relative humidity are studied. In the future, the model will be expanded by the addition of a third component, atmospheric pressure, and with a model of this three-element meteorological complex, properties of enthalpy of moist air time-series will be studied.

Keywords: air temperature; time series; air; relative humidity; temperature relative

Journal Title: Statistical Papers
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.