LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Asymptotic properties of the QMLE in a log-linear RealGARCH model with Gaussian errors

Photo by thinkmagically from unsplash

To incorporate the realized volatility in stock return, Hansen et al. (J Appl Econ 27:877–906, 2012) proposed a RealGARCH model and conjectured some theoretical properties about the quasi-maximum likelihood estimation… Click to show full abstract

To incorporate the realized volatility in stock return, Hansen et al. (J Appl Econ 27:877–906, 2012) proposed a RealGARCH model and conjectured some theoretical properties about the quasi-maximum likelihood estimation (QMLE) for parameters in a log-linear RealGARCH model without rigorous proof. Under Gaussian errors, this paper derives the detailed proof of the theoretical results including consistency and asymptotic normality of the QMLE, hence it solves the conjectures in Hansen et al. (J Appl Econ 27:877–906, 2012).

Keywords: realgarch model; realgarch; log linear; gaussian errors; linear realgarch

Journal Title: Statistical Papers
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.