LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Proposing a novel hybrid intelligent model for the simulation of particle size distribution resulting from blasting

Photo from archive.org

In the open-pit mines and civil projects, drilling and blasting is the most common method for rock fragmentation aims. This article proposes a new hybrid forecasting model based on firefly… Click to show full abstract

In the open-pit mines and civil projects, drilling and blasting is the most common method for rock fragmentation aims. This article proposes a new hybrid forecasting model based on firefly algorithm, as an algorithm optimizer, combined with the adaptive neuro-fuzzy inference system for estimating the fragmentation. In this regard, 72 datasets were collected from Shur river dam region, and the required parameters were measured. Using the different input parameters, six hybrid models were constructed. In these models, 58 and 14 data were used for training and testing, respectively. The proposed hybrid models were then evaluated in accordance with statistical criteria such as coefficient of determination and Nash and Sutcliffe. Based on obtained results, the proposed model with five input parameters, including burden, spacing, stemming, powder factor and maximum charge per delay can estimate rock fragmentation better than the linear multiple regression. The values of the coefficient of determination for the proposed hybrid model and linear multiple regression were 0.980 and 0.669, respectively, that demonstrate the hybrid forecasting model proposed in the present study can be introduced as a reliable method for estimating the fragmentation.

Keywords: proposing novel; novel hybrid; model; intelligent model; fragmentation; hybrid intelligent

Journal Title: Engineering with Computers
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.