LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A bounded numerical solver for a fractional FitzHugh–Nagumo equation and its high-performance implementation

Photo from wikipedia

In this paper, we propose a high-performance implementation of a space-fractional FitzHugh–Nagumo model. Our implementation is based on a positivity- and boundedness-preserving finite-difference model to approximate the solutions of a… Click to show full abstract

In this paper, we propose a high-performance implementation of a space-fractional FitzHugh–Nagumo model. Our implementation is based on a positivity- and boundedness-preserving finite-difference model to approximate the solutions of a Riesz space-fractional reaction-diffusion equation. The model generalizes the FitzHugh–Nagumo model. The stability and convergence of the difference scheme are thoroughly discussed. Moreover, we prove the existence and uniqueness of numerical solutions, positivity, boundedness and consistency of the model. The scheme is based on weighted and shifted Grünwald differences. The conjugate gradient method is used then to solve the sparse matrix system. The MPI and PETSc libraries are used for the computational implementation. We investigate the influence of some computer factors on the performance of our implementation and scalability. More precisely, we consider the number of cores, the size of the computation mesh and the orders of the fractional derivatives. Tests are evaluated on a ccNUMA architecture with two CPUs.

Keywords: implementation; fitzhugh nagumo; performance implementation; model; high performance

Journal Title: Engineering with Computers
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.