LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stability evaluation of dump slope using artificial neural network and multiple regression

Photo by bostonpubliclibrary from unsplash

The present paper focuses on designing an artificial neural network (ANN) model and a multiple regression analysis (MRA) that could be used to predict factor of safety of dragline dump… Click to show full abstract

The present paper focuses on designing an artificial neural network (ANN) model and a multiple regression analysis (MRA) that could be used to predict factor of safety of dragline dump slope. To implement these two models, the dataset was utilized from the numerical simulation results of dragline dump slopes, wherein 216 dragline dump slope models were simulated using a numerical modeling technique employed with the finite element method. The finite element model was incorporated a combination of three geometrical parameters, namely, coal-rib height (Crh), dragline dump slope height (Sh), and dragline dump slope angle (Sa) of the dump slope. The predicted results derived from the MRA and ANN models were compared with the results obtained from the numerical simulation of the dump slope models. Moreover, to compare the validity of both the models, various performance indicators, such as variance account for (VAF), determination coefficient (R2), root mean square error (RMSE), and residual error were calculated. Based on these performance indicators, the ANN model has shown a higher prediction accuracy than the MRA model. The study reveals that the ANN model developed in this research could be handy in designing the dragline dump slopes at the preliminary stage.

Keywords: neural network; dragline dump; dump slope; artificial neural; dump

Journal Title: Engineering With Computers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.