The paper solves the parameters identification problem in a nonlinear heat equation with homogenization functions as the bases, which are constructed from the boundary data of the temperature in the… Click to show full abstract
The paper solves the parameters identification problem in a nonlinear heat equation with homogenization functions as the bases, which are constructed from the boundary data of the temperature in the 2D and 3D space-time domains. To satisfy the over-specified Neumann boundary condition, a linear equations system is derived and then used to determine the expansion coefficients of the solution. Then, after back substituting the solution and collocating points to satisfy the governing equations, the space-time-dependent and temperature-dependent heat conductivity functions in 2D and 3D nonlinear heat equations are identified by solving other linear systems. The novel methods do not need iteration and solving nonlinear equations, since the unknown heat conductivities are retrieved from the solutions of linear systems. The solutions and the heat conductivity functions recovered are quite accurate in the entire space-time domain. We find that even for the inverse problems of nonlinear heat equations, the homogenization functions method is easily used to recover 2D and 3D space-time-dependent and temperature-dependent heat conductivity functions. It is interesting that the present paper makes a significant contribution to the engineering and science in the field of inverse problems of heat conductivity, merely solving linear equations and without employing iteration and solving nonlinear equations to solve nonlinear inverse problems.
               
Click one of the above tabs to view related content.