LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computational intelligence approach using Levenberg–Marquardt backpropagation neural networks to solve the fourth-order nonlinear system of Emden–Fowler model

Photo by cenisev from unsplash

The present investigations are related to design an integrated computing numerical approach through Levenberg–Marquardt backpropagation (LMB) neural networks (NNs), i.e., LMB-NNs. The designed LMB-NNs approach is presented to solve the… Click to show full abstract

The present investigations are related to design an integrated computing numerical approach through Levenberg–Marquardt backpropagation (LMB) neural networks (NNs), i.e., LMB-NNs. The designed LMB-NNs approach is presented to solve the fourth-order nonlinear system of Emden–Fowler model (FO-SEFM). The solution of six different examples based on the FO-SEFM using the designed methodology LMB-NNs is numerically treated along with the discussion of singular point and shape factor. The comparison of the obtained results from the LMB-NNs and the exact solutions of each example has been presented. To evaluate the approximate results of the FO-SEFM for different problems, the testing, training, and authentication procedures are accompanied to adapt the NNs by reducing the functions of mean square error (MSE) through the LMB. The proportional investigations and performance studies based on the results of error histograms, MSE, regression, and correlation establish the effectiveness and correctness of the designed LMB-NNs approach.

Keywords: marquardt backpropagation; levenberg marquardt; lmb nns; solve fourth; neural networks; approach

Journal Title: Engineering With Computers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.