LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

miR-23a-3p is involved in drug resistance by directly targeting the influx drug transporter organic anion-transporting polypeptide 2

Photo from wikipedia

Drug transporters are involved in the drug resistance of individuals with drug-resistant epilepsy by influencing the intracerebral transport of antiepileptic drugs (AEDs). The expression of drug transporters is associated with… Click to show full abstract

Drug transporters are involved in the drug resistance of individuals with drug-resistant epilepsy by influencing the intracerebral transport of antiepileptic drugs (AEDs). The expression of drug transporters is associated with microRNAs. We previously revealed that miR-23a-3p levels were elevated in the blood of patients with intractable epilepsy. Additionally, the influx drug transporter organic anion-transporting polypeptide 2 (Oatp2) is involved in the intracerebral transport of valproic acid (VPA), the most commonly used AED; repeated seizures lead to decreased expression of Oatp2. However, the role of miR-23a-3p in the expression of Oatp2 and in the development of drug resistance has not been established. Herein, we aimed to determine the potential role of miR-23a-3p in VPA-resistant epilepsy through in vivo and in vitro experiments. Epilepsy was elicited after status epilepticus (SE) was induced by lithium-pilocarpine in adult Sprague-Dawley rats, followed by VPA treatment to select rats with VPA resistance. The expression of miR-23a-3p was detected by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). A miR-23a-3p inhibitor was intracerebrally injected into VPA-resistant rats, and histological staining and Morris water maze tests were performed to evaluate brain damage and learning/memory functions in these rats. Subsequently, a dual-luciferase reporter assay and a VPA uptake assay were performed in brain microvascular endothelial cells (BMECs) to investigate the underlying mechanism of action of miR-23a-3p. Our results indicated that compared to that in control rats, miR-23a-3p was elevated in VPA-resistant rats. Intracerebral injection of a miR-23a-3p inhibitor reduced brain damage and the associated deficits in learning and memory functions in rats with VPA resistance. Further investigation indicated that Oatp2 was the direct target of miR-23a-3p, and it was negatively regulated by miR-23a-3p in the brain and BMECs. Furthermore, we demonstrated that miR-23a-3p reduced VPA uptake in BMECs by regulating Oatp2 expression. miR-23a-3p is involved in VPA resistance in epilepsy by directly targeting the influx drug transporter Oatp2, indicating that miR-23a-3p could be a potential therapeutic target for intractable epilepsy.

Keywords: drug; mir 23a; drug resistance; influx drug

Journal Title: Child's Nervous System
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.