LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identifying a key physical factor sensitive to the performance of Madden–Julian oscillation simulation in climate models

Photo from wikipedia

A key physical factor in regulating the performance of Madden–Julian oscillation (MJO) simulation is examined by using 26 climate model simulations from the World Meteorological Organization’s Working Group for Numerical… Click to show full abstract

A key physical factor in regulating the performance of Madden–Julian oscillation (MJO) simulation is examined by using 26 climate model simulations from the World Meteorological Organization’s Working Group for Numerical Experimentation/Global Energy and Water Cycle Experiment Atmospheric System Study (WGNE and MJO-Task Force/GASS) global model comparison project. For this, intraseasonal moisture budget equation is analyzed and a simple, efficient physical quantity is developed. The result shows that MJO skill is most sensitive to vertically integrated intraseasonal zonal wind convergence (ZC). In particular, a specific threshold value of the strength of the ZC can be used as distinguishing between good and poor models. An additional finding is that good models exhibit the correct simultaneous convection and large-scale circulation phase relationship. In poor models, however, the peak circulation response appears 3 days after peak rainfall, suggesting unfavorable coupling between convection and circulation. For an improving simulation of the MJO in climate models, we propose that this delay of circulation in response to convection needs to be corrected in the cumulus parameterization scheme.

Keywords: performance madden; madden julian; physical factor; climate; key physical; simulation

Journal Title: Climate Dynamics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.