On the basis of climate zones classified by the number of days of the daily average temperature ≥ 10 °C (DT10) over China, the performance of the 9 CMIP5 climate models is evaluated… Click to show full abstract
On the basis of climate zones classified by the number of days of the daily average temperature ≥ 10 °C (DT10) over China, the performance of the 9 CMIP5 climate models is evaluated in this paper. The results indicate that the CMCC-CMS and MPI-ESM-MR show higher skill than the other 7 models in simulating spatial pattern and its decadal change of climate zones over China. The simulation results for FGOALS-g2 and INM-CM4 both show relatively lower skill than the other 7 models. Meanwhile, the performance of multi-model ensemble in simulating climate zones over China is obviously better than the simulated result of any single model. So, it is a good way to simulate climate zones by multi-model ensemble to reduce some uncertainty of climate models. However, it is crucial to select appropriate ensemble members. Compared with 1960–2005, the climatic zones in China have an obvious trend of northward shift in 2021–2100. The range of southern sub-tropical belt expands to the most areas in the south of Yangtze River under RCP4.5 emission scenarios, and further extends to the north areas of Yangtze River with a maximum of 2–6° of latitude under RCP8.5 emission scenarios. Middle sub-tropical belt shifts gradually to the areas between Yellow River and north areas of the middle and lower reaches of the Yangtze River. Northern sub-tropical belt shifts northward to southeastern North China. Warm extra-tropical belt extends to the most of Northeast China, most of central Inner Mongolia, and northern Xinjiang under RCP8.5 emission scenarios.
               
Click one of the above tabs to view related content.