LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transient contributions to the forcing of the atmospheric annual cycle

Photo from wikipedia

The forcing of the global circulation is examined using a primitive equation model and a 38-year reanalysis dataset. One-timestep integrations are initialised with selected sets of initial conditions, and the… Click to show full abstract

The forcing of the global circulation is examined using a primitive equation model and a 38-year reanalysis dataset. One-timestep integrations are initialised with selected sets of initial conditions, and the forcing budget for the mean annual cycle is deduced. This budget consists of sources and sinks of momentum, temperature and humidity which are balanced by dynamical terms. The associated timescale interactions are examined in detail. The time-mean forcing is balanced by time-mean fluxes, annual cycle interactions and transient fluxes. The annual cycle of the forcing is balanced by the interaction of annual cycle anomalies with the time-mean flow and with themselves (this latter cycle-cycle interaction term is found to be important for the moisture supply over West Africa). Transient interactions on other timescales also contribute to the forcing of the annual cycle, but the interaction term between the annual cycle and other timescales is small, as is the storage term associated with seasonal tendencies. This objectively derived empirical forcing is then used to drive the dynamical model. The resulting simple GCM is called DREAM (Dynamical Research Empirical Atmospheric Model). This is the first time this approach has been used with an annual cycle. The systematic errors of DREAM compared to the reanalysis chiefly concern the momentum balance in the southern hemisphere jet. Perpetual season simulations are similar to individual seasons from the annual cycle run, consistent with the small seasonal tendency term in the forcing.

Keywords: transient contributions; annual cycle; term; cycle; time mean

Journal Title: Climate Dynamics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.