Atmospheric cold pools generated from convective downdrafts can significantly modulate air-sea interaction processes, though the variability in cold pool events is not yet documented in the Bay of Bengal (BoB).… Click to show full abstract
Atmospheric cold pools generated from convective downdrafts can significantly modulate air-sea interaction processes, though the variability in cold pool events is not yet documented in the Bay of Bengal (BoB). In this study, the seasonal and diurnal variability of cold pool events (defined as a drop in air temperature greater than 1 °C within 30 min) in the BoB is examined using moored buoy measurements with 10-min temporal resolution at 8°N, 12°N, and 15°N along 90°E. The analysis shows that cold pools are plentiful and frequent during summer (May–September) and fall (October–November) compared to winter (December-February) and spring (March–April). Results also indicate a significant diurnal variability at 15°N and 12°N (but not at 8°N) during summer, with more frequent and intense cold pool events in the afternoon. Cold pools lead to an intensification of turbulent heat exchange between the ocean and atmosphere, with increased latent heat loss (~ 80 Wm−2) through both an increase in wind speed and reduction in air specific humidity and increased sensible heat loss (~ 40 Wm−2) due primarily to air temperature drops. There is also a significant diurnal variability in these air-sea exchanges during the summer, with a twofold enhancement in latent and sensible heat fluxes associated with afternoon vs nighttime cold pools events. Finally, we establish the connection between the enhancement of afternoon cold pool events and southeastward propagating synoptic-scale rainfall activity on diurnal time scales from the western BoB.
               
Click one of the above tabs to view related content.