LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation in concentration of surface amino groups upon doped and dedoped Fe3O4/PANI nanocomposites through conjugation with p-hydroxybenzaldehyde

Photo by modry_dinosaurus from unsplash

An in situ chemical oxidation polymerization approach in combination with dedoping treatment was employed for preparing Fe3O4/polyaniline (Fe3O4/PANI) and dedoped Fe3O4/PANI nanocomposites. The two magnetic nanocomposites were featured with relatively… Click to show full abstract

An in situ chemical oxidation polymerization approach in combination with dedoping treatment was employed for preparing Fe3O4/polyaniline (Fe3O4/PANI) and dedoped Fe3O4/PANI nanocomposites. The two magnetic nanocomposites were featured with relatively high-saturation magnetization, superparamagnetism, and a multicore–shell structure. Both S and Cl species can be doped into PANI shell. The doping level of Fe3O4/PANI nanocomposite was estimated to be 30.9% through X-ray photoelectron spectroscopy. After dedoping treatment, about 95% S and 40% Cl can be removed from PANI shell. More significantly, a spectroscopic method has been developed for estimating the concentration of amino groups on surface of PANI-coated nanocomposites through nucleophilic addition between amino and p-hydroxybenzaldehyde. The concentration of surface amino groups was estimated to be ca. 357.1 and 554.5 μmol g−1, corresponding to the doped and dedoped magnetic nanocomposites, respectively.

Keywords: amino groups; dedoped fe3o4; fe3o4 pani; pani; concentration

Journal Title: Colloid and Polymer Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.