LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the glass transition and correlation functions

Photo from wikipedia

Correlation functions are the basis for the understanding of many thermodynamic systems that can be directly observed by scattering experiments. In this manuscript, the correlation functions include the steric repulsion… Click to show full abstract

Correlation functions are the basis for the understanding of many thermodynamic systems that can be directly observed by scattering experiments. In this manuscript, the correlation functions include the steric repulsion of atoms that also leads to distinct shells of neighbors. A free energy is derived on the basis of these assumptions, and in the following the temperature dependence of the density (or specific volume), the typical time scale of the α-relaxation, and the heat capacity. From this, I argue that the glass transition is dominated by the vicinity of a first-order phase transition. While the correlation length stays rather constant in the vicinity of the glass transition, the intensity of the fluctuations is considerably increasing. The scattering amplitude is connected to the cluster size, also introduced in the cooperativity argument. Additionally, correlations of loops are discussed. The additional correlations describe rather small structures. Applying this to scattering intensities, a correlation peak was described that may be connected to the “Boson Peak” or a “cooperativity length.” The new concept of correlation functions on sterically repulsive atoms may find more attention in the wider field of physics.

Keywords: correlation; transition correlation; correlation functions; glass transition

Journal Title: Colloid and Polymer Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.