LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical study of Saffman–Taylor instability in immiscible nonlinear viscoelastic flows

Photo by nathanguzman from unsplash

In this paper, a numerical solution for Saffman–Taylor instability of immiscible nonlinear viscoelastic-Newtonian displacement in a Hele–Shaw cell is presented. Here, a nonlinear viscoelastic fluid pushes a Newtonian fluid and… Click to show full abstract

In this paper, a numerical solution for Saffman–Taylor instability of immiscible nonlinear viscoelastic-Newtonian displacement in a Hele–Shaw cell is presented. Here, a nonlinear viscoelastic fluid pushes a Newtonian fluid and the volume of fluid method is applied to predict the formation of two phases. The Giesekus model is considered as the constitutive equation to describe the nonlinear viscoelastic behavior. The simulation is performed by a parallelized finite volume method (FVM) using second order in both the spatial and the temporal discretization. The effect of rheological properties and surface tension on the immiscible Saffman–Taylor instability are studied in detail. The destabilizing effect of shear-thinning behavior of nonlinear viscoelastic fluid on the instability is studied by changing the mobility factor of Giesekus model. Results indicate that the fluid elasticity and capillary number decrease the intensity of Saffman–Taylor instability.

Keywords: taylor instability; saffman taylor; nonlinear viscoelastic; instability immiscible; immiscible nonlinear; instability

Journal Title: Rheologica Acta
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.