LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructure, microrheology, and dynamics of laponite® and laponite®-poly(ethylene oxide) glasses and dispersions

Photo from archive.org

We utilize dynamic light scattering (DLS)-based passive microrheology to probe the dynamics and structural evolution of laponite® and laponite®-polymer glasses and dispersions at the microscale. The results reveal an increase… Click to show full abstract

We utilize dynamic light scattering (DLS)-based passive microrheology to probe the dynamics and structural evolution of laponite® and laponite®-polymer glasses and dispersions at the microscale. The results reveal an increase in the dynamic heterogeneity of laponite® dispersions with an increase of laponite® concentration and aging time. In neat laponite® dispersions, the degree of stiffness is enhanced and the dynamics are retarded at higher laponite® concentration due to the formation of a repulsive glass. In the presence of PEO with a moderate molecular weight of 20 kg/mol, the microviscoelastic properties of 2 wt% laponite® dispersions show non-monotonic effects with PEO concentration upon aging, which agrees with the results obtained previously from bulk rheology. However, the magnitudes of the viscoelastic moduli ( G’ and G” ) of dispersions beyond the gel point obtained from DLS-microrheology is lower than that obtained from conventional rheology. Our results suggest that the DLS-microrheology can be used to qualitatively study dynamic transitions and the microviscoelastic properties of gels and soft solids. Graphical abstract

Keywords: rheology; laponite laponite; microrheology; microstructure microrheology; glasses dispersions; laponite dispersions

Journal Title: Rheologica Acta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.