LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of pressure on closure temperature of a trace element in cooling petrological systems

Photo by fabiooulucas from unsplash

Closure temperature is important to many diffusion-related problems involving cooling. The classic model of Dodson and its modifications for cooling petrological systems are formulated at constant pressure. Many petrologic processes… Click to show full abstract

Closure temperature is important to many diffusion-related problems involving cooling. The classic model of Dodson and its modifications for cooling petrological systems are formulated at constant pressure. Many petrologic processes involve changes in both temperature and pressure. The effect of changing pressure on diffusional loss in cooling petrological systems has not been considered in Dodson’s model. During upwelling, the decompression rate is related to the cooling rate through the slope of the upwelling path. Simple analytical expressions for the average or mean closure temperature and closure pressure in cooling-upwelling mono-mineralic and bi-mineralic systems are obtained by noting that both temperature and pressure decrease as a function of time along the upwelling path. These pressure-adjusted equations are nearly identical to closure temperature equations for isobaric cases if one replaces the activation energy and pre-exponential factor for diffusion in the isobaric formulations by the path-dependent activation energy and pre-exponential factor. The latter also depend on the slope of the upwelling path. The competing effects between pressure and temperature on diffusion during upwelling result in reductions in the effective activation enthalpy for diffusion and exchange enthalpy for partitioning, which in turn leads to systematic deviations in closure temperatures from cases of constant pressure. For systems with large activation volume for diffusion, it may be possible to deduce upwelling path and upwelling rate from closure temperatures and closure pressures of selected elements. Examples of closure temperature and closure pressure for REE diffusion in garnet and clinopyroxene and in garnet–clinopyroxene aggregates are presented and discussed in the context of the minor’s rule and the REE-in-garnet–clinopyroxene thermobarometer. Closure temperatures for middle-to-heavy REE in garnet–clinopyroxene aggregates are controlled primarily by diffusion in clinopyroxene unless the modal abundance of garnet is very small or the effective grain size of clinopyroxene is considerably smaller than that of garnet.

Keywords: closure temperature; diffusion; closure; garnet; pressure

Journal Title: Contributions to Mineralogy and Petrology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.