LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controls on development of different mineral assemblages in gabbro and basalt during subduction metamorphism

Photo from wikipedia

Coexisting fine-grained (meta-volcanic) and coarse-grained (meta-plutonic) mafic rocks in a high-pressure (P)/low-temperature (T) complex (Sivrihisar, Turkey) preserve different prograde, peak, and retrograde mineral assemblages, providing an opportunity to evaluate controls… Click to show full abstract

Coexisting fine-grained (meta-volcanic) and coarse-grained (meta-plutonic) mafic rocks in a high-pressure (P)/low-temperature (T) complex (Sivrihisar, Turkey) preserve different prograde, peak, and retrograde mineral assemblages, providing an opportunity to evaluate controls on mineral assemblages in metabasites that experienced the same P–T conditions. Fine-grained metabasalts are garnet-bearing lawsonite blueschist and eclogite with similar assemblages that vary on a mm- to cm- scale in mode of glaucophane vs. omphacite. In contrast, metagabbro consists of a disequilibrium mineral suite of relict igneous clinopyroxene partially replaced by omphacite or hydrous phases (lawsonite + tremolite or glaucophane) in a matrix of fine-grained lawsonite, omphacite, tremolite, white mica, very rare garnet, and retrograde minerals (e.g., epidote, albite, and titanite), with later chlorite and calcite. Pseudosection modeling predicts similar peak P–T conditions (490–530 °C, 1.8–2.0 GPa) for both glaucophane-rich (blueschist) and omphacite-rich (eclogite) layers of the metabasalt and similar to slightly higher conditions (490–600 °C, 1.9–2.5 GPa) for metagabbro. The range of modelled H2O content at peak P–T conditions in metabasalt (2.0–5.4 wt%) is significantly lower than in metagabbro (6.4–8.7 wt%) due to the higher modal abundance of hydrous minerals in the latter. At the relatively similar peak P–T conditions, metagabbro experienced different reaction histories from coexisting metabasalt, thereby developing distinctive HP/LT mineral assemblages and modes (e.g., scarce garnet) owing to its more Mg-rich bulk composition (XMg = 0.58–0.84 vs. 0.50), higher H2O content, and coarser grain-size. This study is the first petrologic analysis of Sivrihisar metagabbro and the first systematic study of H2O content in metabasites from this locality, which is one of the best-preserved examples of lawsonite eclogite and blueschist in the world.

Keywords: mineral; fine grained; h2o content; mineral assemblages; peak conditions; metagabbro

Journal Title: Contributions to Mineralogy and Petrology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.