LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The effect of initial H2O concentration on decompression-induced phase separation and degassing of hydrous phonolitic melt

Photo by jjames25 from unsplash

Supersaturation of H2O during magma ascent leads to degassing of melt by formation and growth of vesicles that may power explosive volcanic eruptions. Here, we present experiments to study the… Click to show full abstract

Supersaturation of H2O during magma ascent leads to degassing of melt by formation and growth of vesicles that may power explosive volcanic eruptions. Here, we present experiments to study the effect of initially dissolved H2O concentration (cH2Oini) on vesicle formation, growth, and coalescence in phonolitic melt. Vesuvius phonolitic melts with cH2Oini ranging between 3.3 and 6.3 wt% were decompressed at rates of 1.7 and 0.17 MPa·s−1 and at temperatures ≥ 1323 K. Decompression started from 270 and 200 MPa to final pressures of 150–20 MPa, where samples were quenched isobarically. Optical microscopy and Raman spectroscopic measurements confirm that the glasses obtained were free of microcrystals and Fe-oxide nanolites, implying that the experiments were superliquidus and phase separation of the hydrous melt was homogeneous. A minimum number of the initially formed vesicles, defined by the number density normalized to vesicle-free glass volume (VND), is observed at ~ 5 wt% cH2Oini with a logVND of ~ 5 (in mm−3). The logVND increases strongly towards lower and higher cH2Oini by one order of magnitude. Furthermore, an important transition in evolution of vesiculation occurs at ~ 5.6 wt% cH2Oini. At lower cH2Oini, the initial VND is preserved during further decompression up to melt porosities of 30–50%. At higher cH2Oini, the initial vesicle population is erased at low melt porosities of 15–21% during further decompression. This observation is attributed to vesicle coalescence favored by low melt viscosity. In conclusion, cH2Oini determines the VND of initial phase separation and the evolution of vesiculation during decompression that controls the style of volcanic eruptions.

Keywords: phase separation; decompression; phonolitic melt; h2o concentration; melt

Journal Title: Contributions to Mineralogy and Petrology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.