LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact vibrations of guide thimbles in nuclear fuel assembly

Photo from wikipedia

In nuclear fuel assemblies of pressurized water reactors, guide thimbles (GTs) secure a safe control rod drop. The control rod fall into the GT should be as fast as possible… Click to show full abstract

In nuclear fuel assemblies of pressurized water reactors, guide thimbles (GTs) secure a safe control rod drop. The control rod fall into the GT should be as fast as possible to provide prompt reactor shutdown. The GTs are long thin-walled tubes that are dynamically excited by fuel assembly (FA) components motion caused by pressure pulsations of coolant. GTs are embedded in spacer grid cells and sleeve (SL) with radial clearances. Vibration of FA components, caused by the FA support plates motion in the reactor core, possibly generates impact forces between GT and spacer grids. The presented method introduces an original approach to mathematical modelling and simulation analysis of GT nonlinear vibrations respecting impact and friction forces at all the contact points between GT and spacer grids. The dependence of maximal dynamical lateral GT deformations on radial clearances and stiffnesses of spacer grid cells is analysed. The method is applied to GT in the hexagonal-type FA used in the VVER-type reactors.

Keywords: fuel assembly; impact; nuclear fuel; fuel; guide thimbles

Journal Title: Archive of Applied Mechanics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.