LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of velocity second slip model and induced magnetic field on peristaltic transport of non-Newtonian fluid in the presence of double-diffusivity convection in nanofluids

Photo from wikipedia

The significance of velocity second slip model of non-Newtonian fluid on peristaltic pumping in existence of double-diffusivity convection in nanofluids and induced magnetic field is deliberated. Mathematical modelling of current… Click to show full abstract

The significance of velocity second slip model of non-Newtonian fluid on peristaltic pumping in existence of double-diffusivity convection in nanofluids and induced magnetic field is deliberated. Mathematical modelling of current problem is defined in fixed frame of reference and then abridges under well- known conjecture of long wavelength and low but finite Reynolds number approximation. Precise results of coupled nonlinear partial differential equations are presented. Graphical results exhibit the performance of various supportive parameters. The phenomenon of stream functions with different wave forms is also discussed in detail. The effects of thermal energy, solute concentration, and nanoparticle fraction are also described using graphical representation.

Keywords: slip model; double diffusivity; velocity second; newtonian fluid; non newtonian; second slip

Journal Title: Archive of Applied Mechanics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.