LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Increased rate of force development during periodized maximum strength and power training is highly individual

Photo from wikipedia

Maximum strength training induces various improvements in the rate of force development (RFD) on a group level, but no study has investigated inter-individual adaptations in RFD. Fourteen men (28 ± 6 years… Click to show full abstract

Maximum strength training induces various improvements in the rate of force development (RFD) on a group level, but no study has investigated inter-individual adaptations in RFD. Fourteen men (28 ± 6 years old) performed the same 10-week maximum strength and then a 10-week power training program. Maximal force and RFD were recorded during maximal isometric leg extension voluntary contractions repeatedly before every 7th training session (2 sessions/week). After the intervention, subjects were retrospectively divided into three groups based on their RFD improvements: (1) improved only during the maximum strength period (MS-responders, + 100 ± 35%), (2) improved only during the power period (P-responders, + 53 ± 27%) or (3) no improvement at all (non-responders, + 3 ± 9%). All groups increased dynamic 1RM equally, but baseline 1RM was greater (p < 0.05) in responder vs non-responder groups. MS-responders had higher electrical stimulation-induced torque at baseline and they improved (+ 35 ± 28%) power production at 50% 1RM load more than P- (− 7 ± 20%, p = 0.052) and non-responders (+ 3 ± 6%, p = 0.066) during the maximum strength training period. MS-responders increased vastus lateralis cross-sectional area (+ 12 ± 9%, p < 0.01) as did P-responders (+ 10 ± 7%, p = 0.07), whereas non-responders were unchanged. Free androgen index (FAI) in responders was higher (+ 34%, p < 0.05) compared to non-responders at baseline. The maximum strength period decreased testosterone (− 17 ± 12; 17 ± 22%), FAI ratio (− 12 ± 14; − 21 ± 23%) and testosterone/cortisol ratio (− 17 ± 25; − 31 ± 20%) in MS and P-responders, respectively. During the P-period hormonal levels plateaued. To conclude, periodized strength training induced different inter-individual physiological responses, and thus RFD development may vary between individuals. Therefore, RFD seems to be a useful tool for planning and monitoring strength training programs for individual neuromuscular performance needs.

Keywords: strength; maximum strength; training; power; force; development

Journal Title: European Journal of Applied Physiology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.