LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transcutaneous electrical nerve stimulation improves fatigue performance of the treated and contralateral knee extensors

Photo by katya from unsplash

PurposeTranscutaneous electrical nerve stimulation (TENS) can reduce acute and chronic pain. Unilateral fatigue can produce discomfort in the affected limb and force and activation deficits in contralateral non-exercised muscles. TENS-induced… Click to show full abstract

PurposeTranscutaneous electrical nerve stimulation (TENS) can reduce acute and chronic pain. Unilateral fatigue can produce discomfort in the affected limb and force and activation deficits in contralateral non-exercised muscles. TENS-induced local pain analgesia effects on non-local fatigue performance are unknown. Hence, the aim of the study was to determine if TENS-induced pain suppression would augment force output during a fatiguing protocol in the treated and contralateral muscles.MethodsThree experiments were integrated for this article. Following pre-tests, each experiment involved 20 min of TENS, sham, or a control condition on the dominant quadriceps. Then either the TENS-treated quadriceps (TENS_Treated) or the contralateral quadriceps (TENS_Contra) was tested. In a third experiment, the TENS and sham conditions involved two\; 100-s isometric maximal voluntary contractions (MVC) (30-s recovery) followed by testing of the contralateral quadriceps (TENS_Contra-Fatigue). Testing involved single knee extensors (KE) MVCs (pre- and post-test) and a post-test 30% MVC to task failure.ResultsThe TENS-treated study induced greater (p = 0.03; 11.0%) time to KE (treated leg) failure versus control. The TENS_Contra-Fatigue induced significant (p = 0.04; 11.7%) and near-significant (p = 0.1; 7.1%) greater time to contralateral KE failure versus sham and control, respectively. There was a 14.5% (p = 0.02) higher fatigue index with the TENS (36.2 ± 10.1%) versus sham (31.6 ± 10.6%) conditions in the second fatigue intervention set (treated leg). There was no significant post-fatigue KE fatigue interaction with the TENS_Contra.ConclusionsUnilateral TENS application to the dominant KE prolonged time to failure in the treated and contralateral KE suggesting a global pain modulatory response.

Keywords: nerve stimulation; fatigue; electrical nerve; tens contra; fatigue performance; treated contralateral

Journal Title: European Journal of Applied Physiology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.