LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Ve-resistance locus, a plant signaling intercept

Photo from wikipedia

The Ve-resistance locus in tomato and potato affects both stress/defense and growth, consistent with a signaling intercept and a competitive regulatory mechanism. Acting in an antagonistic fashion, the two genes… Click to show full abstract

The Ve-resistance locus in tomato and potato affects both stress/defense and growth, consistent with a signaling intercept and a competitive regulatory mechanism. Acting in an antagonistic fashion, the two genes comprising the tomato Ve-resistance locus have been shown to influence both the defense/stress cascade, which causes wilt symptoms, and plant growth (Nazar et al. in Planta 247:1339–1350, 2018c); in contrast, both have been reported to elevate wilt resistance in potato or Arabidopsis. In a further examination of this influence in potato transformed with the Ve1 gene, effects are again demonstrated with respect to both disease resistance and crop productivity consistent with the Ve locus being a signaling intercept and the antagonistic effects, previously observed in tomato. The results support a competitive model in which the tomato Ve1 and Ve2 proteins act to reduce the detrimental effects of the defense/stress cascade and energy transfers to the developing potato tubers.

Keywords: plant; potato; resistance locus; signaling intercept; resistance

Journal Title: Planta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.