Coordinating both hands during bimanual reaching is a complex task that can generate interference during action preparation as often indicated by prolonged reaction times for movements that require moving the… Click to show full abstract
Coordinating both hands during bimanual reaching is a complex task that can generate interference during action preparation as often indicated by prolonged reaction times for movements that require moving the two hands at different amplitudes. Individual processing constraints are thought to contribute to this interference effect. Most importantly, however, the amount of interference seems to depend considerably on overall task demands suggesting that interference increases as the available processing resources decrease. Here, we further investigated this idea by comparing performance in a simple direct cueing and a more difficult symbolic cueing task between three groups of participants that supposedly vary in their processing resources, i.e., musicians, young adults and older adults. We found that the size of interference effects during symbolic cueing varied in the tested groups: musicians showed the smallest and older adults the largest interference effects. More importantly, a regression model, using processing speed and processing capacity as predictor variables, revealed a clear link between the available processing resources and the size of the interference effect during symbolic cueing. In the easier direct cueing task, no reliable interference was observed on a group level. We propose that the susceptibility to bimanual interference is modulated by the task-specific processing requirements in relation with the available processing resources of an individual.
               
Click one of the above tabs to view related content.