LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Shaping of discrete auditory inputs to extramodular zones of the lateral cortex of the inferior colliculus

Photo from wikipedia

The multimodal lateral cortex of the inferior colliculus (LCIC) exhibits a modular-extramodular micro-organization that is evident early in development. In addition to a set of neurochemical markers that reliably highlight… Click to show full abstract

The multimodal lateral cortex of the inferior colliculus (LCIC) exhibits a modular-extramodular micro-organization that is evident early in development. In addition to a set of neurochemical markers that reliably highlight its modular-extramodular organization (e.g. modules: GAD67-positive, extramodular zones: calretinin-positive, CR), mature projection patterns suggest that major LCIC afferents recognize and adhere to such a framework. In adult mice, distinct afferent projections appear segregated, with somatosensory inputs targeting LCIC modules and auditory inputs surrounding extramodular fields. Currently lacking is an understanding regarding the development and shaping of multimodal LCIC afferents with respect to its emerging modular-extramodular microarchitecture. Combining living slice tract-tracing and immunocytochemical approaches in GAD67-GFP knock-in mice, the present study characterizes the critical period of projection shaping for LCIC auditory afferents arising from its neighboring central nucleus (CNIC). Both crossed and uncrossed projection patterns exhibit LCIC extramodular mapping characteristics that emerge from initially diffuse distributions. Projection mismatch with GAD-defined modules and alignment with encompassing extramodular zones becomes increasingly clear over the early postnatal period (birth to postnatal day 12). CNIC inputs terminate almost exclusively in extramodular zones that express CR. These findings suggest multimodal LCIC inputs may initially be sparse and intermingle, prior to segregation into distinct processing streams. Future experiments are needed to determine the likely complex interactions and mechanisms (e.g. activity-dependent and independent) responsible for shaping early modality-specific LCIC circuits.

Keywords: cortex inferior; lateral cortex; auditory inputs; inferior colliculus; extramodular zones

Journal Title: Brain Structure and Function
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.