LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

TPP1 OB-fold domain protein suppresses cell proliferation and induces cell apoptosis by inhibiting telomerase recruitment to telomeres in human lung cancer cells

Photo by nci from unsplash

PurposeMaintaining telomeres by recruiting telomerase-to-chromosome ends is essential for cancer cell survival. Inhibiting telomerase recruitment to telomeres represents a novel strategy for telomere-based lung cancer therapy. However, approaches for interrupting… Click to show full abstract

PurposeMaintaining telomeres by recruiting telomerase-to-chromosome ends is essential for cancer cell survival. Inhibiting telomerase recruitment to telomeres represents a novel strategy for telomere-based lung cancer therapy. However, approaches for interrupting telomerase recruitment for cancer therapy still need to be explored.MethodsThe telomere-binding protein TPP1 is responsible for recruiting telomerase to telomeres and synthesizing telomeres through the association between the oligosaccharide/oligonucleotide-binding (OB)-fold domain of TPP1 and telomerase reverse transcriptase. We overexpressed the TPP1 OB domain (TPP1-OB) by lentivirus infection in lung cancer cells. Telomere length was examined by Southern blot analysis of terminal restriction fragments. The effects of TPP1-OB on cell proliferation, the cell cycle, apoptosis, chemosensitivity, and tumor growth were evaluated in vitro and in vivo.ResultTPP1-OB inhibited the recruitment of telomerase to telomeres and shortened telomere length by acting as a dominant-negative mutant of TPP1. TPP1-OB resulted in reduced cell proliferation, G1 cell cycle arrest, and increased cell apoptosis in lung cancer cells. Cell apoptosis occurred mainly through the caspase-3-dependent signaling pathway. TPP1-OB also suppressed anchorage-independent growth and tumor growth in vivo. Moreover, we demonstrated that TPP1-OB enhances the sensitivity of lung cancer cells to the chemotherapeutic drug paclitaxel.ConclusionOur results suggest that inhibiting TPP1-mediated telomerase recruitment by expressing the TPP1-OB domain is a potential novel strategy for telomere-targeted lung cancer therapy.

Keywords: telomerase recruitment; tpp1; lung cancer; cancer cells; cancer

Journal Title: Journal of Cancer Research and Clinical Oncology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.