The protozoan parasite Toxoplasma gondii secretes a number of dense granule proteins (GRAs) from the dense granule organelle to manipulate the host cell. Two of these effector proteins (GRA17 and… Click to show full abstract
The protozoan parasite Toxoplasma gondii secretes a number of dense granule proteins (GRAs) from the dense granule organelle to manipulate the host cell. Two of these effector proteins (GRA17 and GRA23) are involved in the trafficking of molecules between the parasitophorous vacuole (PV) and the host cell cytoplasm. However, their roles in establishing chronic infection remain obscured. In this study, CRISPR-Cas9 was used to delete gra17 or gra23 gene in T. gondii Pru strain (type II). The growth, the virulence, the ability to establish chronic infection, and the immunogenicity of the constructed mutant strains were investigated in Kunming mice. Pru:Δgra17 and Pru:Δgra23 mutants developed PVs with abnormal morphology and exhibited reduced growth rate, compared with the wild-type Pru strain. Deletion of gra17 abrogated acute infection and blocked cyst formation. Although the deletion of gra23 caused slight attenuation of the parasite virulence in mice, it caused a significant reduction in cyst formation. Immunization with Pru:Δgra17 induced high levels of IgG (IgG1 and IgG2a) antibodies and cytokines (interleukin-2 [IL-2], IL-10, IL-12, and interferon gamma [IFN-γ]), which conferred significant protection in mice challenged with virulent type I (RH), ToxoDB#9 (PYS) strains, or less virulent type II (Pru) strain of T. gondii. These findings show that GRA17 and GRA23 play important roles in T. gondii chronic infection and that irreversible deletion of gra17 in T. gondii type II Pru strain can be a viable option for stimulating protective immunity to T. gondii infection.
               
Click one of the above tabs to view related content.