LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Association mapping reveals multiple QTLs for grain protein content in rice useful for biofortification

Photo from wikipedia

Rice is the staple food for majority of the global population. But, rice grain has low protein content (PC). Mapping of QTLs controlling grain PC is essential for enhancement of… Click to show full abstract

Rice is the staple food for majority of the global population. But, rice grain has low protein content (PC). Mapping of QTLs controlling grain PC is essential for enhancement of the trait through breeding programs. A shortlisted panel population for grain protein content was studied for genetic diversity, population structure and association mapping for grain PC. Phenotyping results showed a wide variation for grain PC. The panel population showed a moderate level of genetic diversity estimated through 98 molecular markers. AMOVA and structure analysis indicated linkage disequilibrium for grain PC and deviation of Hardy–Weinberg’s expectation. The analysis showed 15% of the variation among populations and 73% among individuals in the panel population. STRUCTURE analysis categorized the panel population into three subpopulations. The analysis also revealed a common primary ancestor for each subpopulation with few admix individuals. Marker-trait association using 98 molecular markers detected 7 strongly associated QTLs for grain PC by both MLM and GLM analysis. Three novel QTLs qPC3.1, qPC5.1 and qPC9.1 were detected for controlling the grain PC. Four reported QTLs viz., qPC3, QPC8, qPC6.1 and qPC12.1 were validated for use in breeding programs. Reported QTLs, qPC6, qPC6.1 and qPC6.2 may be same QTL controlling PC in rice. A very close marker RM407 near to protein controlling QTL, qProt8 and qPC8, was detected. The study provided clue for simultaneous improvement of PC with high grain yield in rice. The strongly associated markers with grain PC, namely qPC3, qPC3.1, qPC5.1, qPC6.1, qPC8, qPC9.1 and qPC12.1, will be useful for their pyramiding for developing protein rich high yielding rice.

Keywords: protein content; rice; qtls; grain; population

Journal Title: Molecular Genetics and Genomics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.