LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MDH1 deficiency is a metabolic disorder of the malate–aspartate shuttle associated with early onset severe encephalopathy

Photo by paaaaaaaa_co from unsplash

The reversible oxidation of l-malate to oxaloacetate is catalyzed by NAD(H)-dependent malate dehydrogenase (MDH). MDH plays essential roles in the malate–aspartate shuttle and the tricarboxylic acid cycle. These metabolic processes… Click to show full abstract

The reversible oxidation of l-malate to oxaloacetate is catalyzed by NAD(H)-dependent malate dehydrogenase (MDH). MDH plays essential roles in the malate–aspartate shuttle and the tricarboxylic acid cycle. These metabolic processes are important in mitochondrial NADH supply for oxidative phosphorylation. Recently, bi-allelic mutations in mitochondrial MDH2 were identified in patients with global developmental delay, epilepsy and lactic acidosis. We now report two patients from an extended consanguineous family with a deleterious variant in the cytosolic isoenzyme of MDH (MDH1). The homozygous missense variant in the NAD+-binding domain of MDH1 led to severely diminished MDH protein expression. The patients presented with global developmental delay, epilepsy and progressive microcephaly. Both patients had normal concentrations of plasma amino acids, acylcarnitines, lactate, and urine organic acids. To identify the metabolic consequences of MDH1 deficiency, untargeted metabolomics was performed on dried blood spots (DBS) from the patients and in MDH1 knockout HEK293 cells that were generated by Crispr/Cas9. Increased levels of glutamate and glycerol-3-phosphate were found in DBS of both patients. In MDH1 KO HEK293 cells, increased levels of glycerol-3-phosphate were also observed, as well as increased levels of aspartate and decreased levels of fumarate. The consistent finding of increased concentrations of glycerol-3-phosphate may represent a compensatory mechanism to enhance cytosolic oxidation of NADH by the glycerol-P-shuttle. In conclusion, MDH1 deficiency is a new metabolic defect in the malate–aspartate shuttle characterized by a severe neurodevelopmental phenotype with elevated concentrations of glycerol-3-phosphate as a potential biomarker.

Keywords: aspartate shuttle; malate; mdh1 deficiency; malate aspartate; glycerol phosphate

Journal Title: Human Genetics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.