LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of copy number variants for genetic hearing loss: a review of current approaches and recent findings.

Photo by 20164rhodi from unsplash

Structural variation includes a change in copy number, orientation, or location of a part of the genome. Copy number variants (CNVs) are a common cause of genetic hearing loss, comprising… Click to show full abstract

Structural variation includes a change in copy number, orientation, or location of a part of the genome. Copy number variants (CNVs) are a common cause of genetic hearing loss, comprising nearly 20% of diagnosed cases. While large deletions involving the gene STRC are the most common pathogenic CNVs, a significant proportion of known hearing loss genes also contain pathogenic CNVs. In this review, we provide an overview of currently used methods for detection of CNVs in genes known to cause hearing loss including molecular techniques such as multiplex ligation probe amplification (MLPA) and digital droplet polymerase chain reaction (ddPCR), array-CGH and single-nucleotide polymorphism (SNP) arrays, as well as techniques for detection of CNVs using next-generation sequencing data analysis including targeted gene panel, exome, and genome sequencing data. In addition, in this review, we compile published data on pathogenic hearing loss CNVs to provide an up-to-date overview. We show that CNVs have been identified in 29 different non-syndromic hearing loss genes. An understanding of the contribution of CNVs to genetic hearing loss is critical to the current diagnosis of hearing loss and is crucial for future gene therapies. Thus, evaluation for CNVs is required in any modern pipeline for genetic diagnosis of hearing loss.

Keywords: hearing loss; copy number; genetic hearing; cnvs; loss

Journal Title: Human genetics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.