In this paper additive bi-free convolution is defined for general Borel probability measures, and the limiting distributions for sums of bi-free pairs of self-adjoint commuting random variables in an infinitesimal… Click to show full abstract
In this paper additive bi-free convolution is defined for general Borel probability measures, and the limiting distributions for sums of bi-free pairs of self-adjoint commuting random variables in an infinitesimal triangular array are determined. These distributions are characterized by their bi-freely infinite divisibility, and moreover, a transfer principle is established for limit theorems in classical probability theory and Voiculescu’s bi-free probability theory. Complete descriptions of bi-free stability are given and fullness of planar probability distributions is studied. All these results reveal one important feature about the theory of bi-free probability that it parallels the classical theory perfectly well. The emphasis in the whole work is not on the tool of bi-free combinatorics but only on the analytic machinery.
               
Click one of the above tabs to view related content.