LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rigidity of the three-dimensional hierarchical Coulomb gas

Photo from wikipedia

A random set of points in Euclidean space is called ‘rigid’ or ‘hyperuniform’ if the number of points falling inside any given region has significantly smaller fluctuations than the corresponding… Click to show full abstract

A random set of points in Euclidean space is called ‘rigid’ or ‘hyperuniform’ if the number of points falling inside any given region has significantly smaller fluctuations than the corresponding number for a set of i.i.d. random points. This phenomenon has received considerable attention in recent years, due to its appearance in random matrix theory, the theory of Coulomb gases and zeros of random analytic functions. However, most of the published results are in dimensions one and two. This paper gives the first proof of hyperuniformity in a Coulomb type system in dimension three, known as the hierarchical Coulomb gas. This is a simplified version of the actual 3D Coulomb gas. The interaction potential in this model, inspired by Dyson’s hierarchical model of the Ising ferromagnet, has a hierarchical structure and is locally an approximation of the Coulomb potential. Hyperuniformity is proved at both macroscopic and microscopic scales, with upper and lower bounds for the order of fluctuations that match up to logarithmic factors. The fluctuations have cube-root behavior, in agreement with a well-known prediction for the 3D Coulomb gas. For completeness, analogous results are also proved for the 2D hierarchical Coulomb gas and the 1D hierarchical log gas.

Keywords: three dimensional; rigidity three; gas; hierarchical coulomb; coulomb; coulomb gas

Journal Title: Probability Theory and Related Fields
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.