LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On delocalization of eigenvectors of random non-Hermitian matrices

Photo by tompeham from unsplash

We study delocalization of null vectors and eigenvectors of random matrices with i.i.d entries. Let A be an $$n\times n$$ n × n random matrix with i.i.d real subgaussian entries… Click to show full abstract

We study delocalization of null vectors and eigenvectors of random matrices with i.i.d entries. Let A be an $$n\times n$$ n × n random matrix with i.i.d real subgaussian entries of zero mean and unit variance. We show that with probability at least $$1-e^{-\log ^{2} n}$$ 1 - e - log 2 n $$\begin{aligned} \min \limits _{I\subset [n],\,|I|= m}\Vert \mathbf{{v}}_I\Vert \ge \frac{m^{3/2}}{n^{3/2}\log ^Cn}\Vert \mathbf{{v}}\Vert \end{aligned}$$ min I ⊂ [ n ] , | I | = m ‖ v I ‖ ≥ m 3 / 2 n 3 / 2 log C n ‖ v ‖ for any real eigenvector $$\mathbf{{v}}$$ v and any $$m\in [\log ^C n,n]$$ m ∈ [ log C n , n ] , where $$\mathbf{{v}}_I$$ v I denotes the restriction of $$\mathbf{{v}}$$ v to I . Further, when the entries of A are complex, with i.i.d real and imaginary parts, we show that with probability at least $$1-e^{-\log ^{2} n}$$ 1 - e - log 2 n all eigenvectors of A are delocalized in the sense that $$\begin{aligned} \min \limits _{I\subset [n],\,|I|= m}\Vert \mathbf{{v}}_I\Vert \ge \frac{m}{n\log ^Cn}\Vert \mathbf{{v}}\Vert \end{aligned}$$ min I ⊂ [ n ] , | I | = m ‖ v I ‖ ≥ m n log C n ‖ v ‖ for all $$m\in [\log ^C{n},n]$$ m ∈ [ log C n , n ] . Comparing with related results, in the range $$m\in [\log ^{C'}{n},n/\log ^{C'}{n}]$$ m ∈ [ log C ′ n , n / log C ′ n ] in the i.i.d setting and with weaker probability estimates, our lower bounds on $$\Vert \mathbf{{v}}_I\Vert $$ ‖ v I ‖ strengthen an earlier estimate $$\min \nolimits _{|I|= m}\Vert \mathbf{{v}}_I\Vert \ge c(m/n)^6\Vert \mathbf{{v}}\Vert $$ min | I | = m ‖ v I ‖ ≥ c ( m / n ) 6 ‖ v ‖ obtained in Rudelson and Vershynin (Geom Funct Anal 26(6):1716–1776, 2016), and bounds $$\min \nolimits _{|I|= m}\Vert \mathbf{{v}}_I\Vert \ge c(m/n)^2\Vert \mathbf{{v}}\Vert $$ min | I | = m ‖ v I ‖ ≥ c ( m / n ) 2 ‖ v ‖ (in the real setting) and $$\min \nolimits _{|I|= m}\Vert \mathbf{{v}}_I\Vert \ge c(m/n)^{3/2}\Vert \mathbf{{v}}\Vert $$ min | I | = m ‖ v I ‖ ≥ c ( m / n ) 3 / 2 ‖ v ‖ (in the complex setting) established in Luh and O’Rourke (Eigenvector delocalization for non-Hermitian random matrices and applications. arXiv:1810.00489 ). As the case of real and complex Gaussian matrices shows, our bounds are optimal up to the polylogarithmic multiples. We derive stronger estimates without the polylogarithmic error multiples for null vectors of real $$(n-1)\times n$$ ( n - 1 ) × n random matrices.

Keywords: vert mathbf; log log; vert; log; mathbf vert

Journal Title: Probability Theory and Related Fields
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.