LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient generation of functional cardiomyocytes from human umbilical cord-derived virus-free induced pluripotent stem cells

Photo by paipai90 from unsplash

We have previously demonstrated that human umbilical cord-derived mesenchymal stem cells (UC-MSCs) can differentiate into cardiomyocyte-like cells. However, no contracting cells were observed during differentiation. In this study, we generated… Click to show full abstract

We have previously demonstrated that human umbilical cord-derived mesenchymal stem cells (UC-MSCs) can differentiate into cardiomyocyte-like cells. However, no contracting cells were observed during differentiation. In this study, we generated induced pluripotent stem cells (iPSCs) from UC-MSCs using mRNA reprogramming and focused on the differentiation of reprogrammed iPSCs into functional cardiomyocytes. For cardiac differentiation, the spontaneously contracting cell clusters were present on day 8 of differentiation. Immunostaining studies and cardiac-specific gene expression confirmed the cardiomyocyte phenotype of the differentiated cells. Electrophysiology studies indicated that iPSCs derived from UC-MSCs had a capacity for differentiation into nodal-, atrial-, and ventricular-like phenotypes based on action potential characteristics, and the derived cardiomyocytes exhibited responsiveness to β-adrenergic and muscarinic stimulations. Moreover, the derived cardiomyocytes displayed spontaneous intracellular Ca2+ transients. These results demonstrate that functional cardiomyocytes can be generated from reprogrammed UC-MSCs, and the methodology described here will serve as a useful protocol to obtain functional cardiomyocytes from human mesenchymal stem cells.

Keywords: umbilical cord; functional cardiomyocytes; human umbilical; differentiation; stem cells

Journal Title: Cell and Tissue Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.