LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Of mutualism and migration: will interactions with novel ericoid mycorrhizal communities help or hinder northward Rhododendron range shifts?

Photo from wikipedia

Rapid climate change imperils many small-ranged endemic species as the climate envelopes of their native ranges shift poleward. In addition to abiotic changes, biotic interactions are expected to play a… Click to show full abstract

Rapid climate change imperils many small-ranged endemic species as the climate envelopes of their native ranges shift poleward. In addition to abiotic changes, biotic interactions are expected to play a critical role in plant species’ responses. Below-ground interactions are of particular interest given increasing evidence of microbial effects on plant performance and the prevalence of mycorrhizal mutualisms. We used greenhouse mesocosm experiments to investigate how natural northward migration/assisted colonization of Rhododendron catawbiense , a small-ranged endemic eastern U.S. shrub, might be influenced by novel below-ground biotic interactions from soils north of its native range, particularly with ericoid mycorrhizal fungi (ERM). We compared germination, leaf size, survival, and ERM colonization rates of endemic R. catawbiense and widespread R. maximum when sown on different soil inoculum treatments: a sterilized control; a non-ERM biotic control; ERM communities from northern R. maximum populations; and ERM communities collected from the native range of R. catawbiense . Germination rates for both species when inoculated with congeners' novel soils were significantly higher than when inoculated with conspecific soils, or non-mycorrhizal controls. Mortality rates were unaffected by treatment, suggesting that the unexpected reciprocal effect of each species’ increased establishment in association with heterospecific ERM could have lasting demographic effects. Our results suggest that seedling establishment of R. catawbiense in northern regions outside its native range could be facilitated by the presence of extant congeners like R. maximum and their associated soil microbiota. These findings have direct relevance to the potential for successful poleward migration or future assisted colonization efforts.

Keywords: native range; ericoid mycorrhizal; rhododendron; migration; range; mycorrhizal

Journal Title: Oecologia
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.