LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical simulation of a glucose sensitive composite membrane closed-loop insulin delivery system

Photo from wikipedia

Closed-loop insulin delivery system works on pH modulation by gluconic acid production from glucose, which in turn allows regulation of insulin release across membrane. Typically, the concentration variation of gluconic… Click to show full abstract

Closed-loop insulin delivery system works on pH modulation by gluconic acid production from glucose, which in turn allows regulation of insulin release across membrane. Typically, the concentration variation of gluconic acid can be numerically modeled by a set of non-linear, non-steady state reaction diffusion equations. Here, we report a simpler numerical approach to time and position dependent diffusivity of species using finite difference and differential quadrature (DQ) method. The results are comparable to that obtained by analytical method. The membrane thickness directly determines the concentrations of the glucose and oxygen in the system, and inversely to the gluconic acid. The advantage with the DQ method is that its parameter values need not be altered throughout the analysis to obtain the concentration profiles of the glucose, oxygen and gluconic acid. Our work would be useful for modeling diabetes and other systems governed by such non-linear and non-steady state reaction diffusion equations.

Keywords: insulin; system; loop insulin; insulin delivery; closed loop; membrane

Journal Title: Bioprocess and Biosystems Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.