LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization of fermentation conditions for carotenoid production in the radiation-resistant strain Deinococcus xibeiensis R13

Photo by austriannationallibrary from unsplash

Deinococcus xibeiensis R13 was isolated from an extreme environment in Xinjiang, China, and can resist gamma-radiation and UV-irradiation. In this study, D. xibeiensis R13 was shown to be capable of… Click to show full abstract

Deinococcus xibeiensis R13 was isolated from an extreme environment in Xinjiang, China, and can resist gamma-radiation and UV-irradiation. In this study, D. xibeiensis R13 was shown to be capable of efficiently producing carotenoids in culture, and factors influencing its productivity were identified. The maximum carotenoid yield was observed at an initial temperature of 30 °C and pH 7.0 in the presence of fructose, tryptone at a C/N ratio of 1:5, and 10 µM Fe2+. The carotenoid yield under modified culture conditions was 6.64 mg/L after fermentation for 48 h, representing an increase of 84% compared to the original conditions. The biomass reached 7.22 g/L, which was 2.19-fold higher than under non-optimized conditions. The produced carotenoids were extracted from R13 and analyzed by UPLC-MS. This is the first study of carotenoid production by the new strain D. xibeiensis R13, which provides a new source for the microbial fermentation of natural carotenoids, and also provides a good reference for industrial production of other carotenoids and other terpenoid products.

Keywords: deinococcus xibeiensis; carotenoid production; xibeiensis; xibeiensis r13

Journal Title: Bioprocess and Biosystems Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.