LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Green Roccella phycopsis Ach. mediated silver nanoparticles: synthesis, characterization, phenolic content, antioxidant, antibacterial and anti-acetylcholinesterase capacities

Photo by jessbaileydesigns from unsplash

In this study, we develop here for the first time an easy, eco-friendly method for synthesizing silver nanoparticles (AgNPs) using the lichen Roccella phycopsis. AgNPs formation was first determined by… Click to show full abstract

In this study, we develop here for the first time an easy, eco-friendly method for synthesizing silver nanoparticles (AgNPs) using the lichen Roccella phycopsis. AgNPs formation was first determined by a color change of the lichen filtrate to brown, subsequent to addition of AgNO3 solution, and confirmed by a maximum absorbance peak at 425 nm in UV–vis spectrum. Scanning electron microscope images showed a spherical shape with a size distribution between 11 and 18 nm, while the elemental composition was elucidated by the energy dispersive X-ray spectroscopy. The chemical compounds responsible for reduction and stabilization of silver nanoparticles were detected by Frourier transform infrared spectroscopy analysis. The synthesized R. phycopsis silver nanoparticles displayed a strong antioxidant activity. Further, the antibacterial activity was more effective against Gram-negative than Gram-positive bacteria. Besides, the R. phycopsis-AgNPs were potent in inhibiting acetylcholinesterase enzyme with IC50 value of 1.65 ± 0.07 mg/mL.

Keywords: silver nanoparticles; acetylcholinesterase; roccella phycopsis; spectroscopy; phycopsis

Journal Title: Bioprocess and Biosystems Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.