LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of an Automated Swallow-Detection Algorithm Using Visual Biofeedback in Healthy Adults and Head and Neck Cancer Survivors

Photo from wikipedia

Mobile health (mHealth) technologies may offer an opportunity to address longstanding clinical challenges, such as access and adherence to swallowing therapy. Mobili-T® is an mHealth device that uses surface electromyography… Click to show full abstract

Mobile health (mHealth) technologies may offer an opportunity to address longstanding clinical challenges, such as access and adherence to swallowing therapy. Mobili-T® is an mHealth device that uses surface electromyography (sEMG) to provide biofeedback on submental muscles activity during exercise. An automated swallow-detection algorithm was developed for Mobili-T®. This study evaluated the performance of the swallow-detection algorithm. Ten healthy participants and 10 head and neck cancer (HNC) patients were fitted with the device. Signal was acquired during regular, effortful, and Mendelsohn maneuver saliva swallows, as well as lip presses, tongue, and head movements. Signals of interest were tagged during data acquisition and used to evaluate algorithm performance. Sensitivity and positive predictive values (PPV) were calculated for each participant. Saliva swallows were compared between HNC and controls in the four sEMG-based parameters used in the algorithm: duration, peak amplitude ratio, median frequency, and 15th percentile of the power spectrum density. In healthy participants, sensitivity and PPV were 92.3 and 83.9%, respectively. In HNC patients, sensitivity was 92.7% and PPV was 72.2%. In saliva swallows, HNC patients had longer event durations (U = 1925.5, p < 0.001), lower median frequency (U = 2674.0, p < 0.001), and lower 15th percentile of the power spectrum density [t(176.9) = 2.07, p < 0.001] than healthy participants. The automated swallow-detection algorithm performed well with healthy participants and retained a high sensitivity, but had lowered PPV with HNC patients. With respect to Mobili-T®, the algorithm will next be evaluated using the mHealth system.

Keywords: healthy participants; swallow detection; automated swallow; detection algorithm; head neck

Journal Title: Dysphagia
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.